
dot2net: A labeled graph approach
for template-based configuration

of emulation networks

Satoru Kobayashi1, Ryusei Shiiba2, Ryosuke Miura3,
Shinsuke Miwa3, Toshiyuki Miyachi3, Kensuke Fukuda24

1: Okayama Univ, 2: Sokendai, 3: NICT, 4: NII
November 1, 2023

1

2

AI
IoT

Big data

Service

Service network Emulation network

World wide

web
Deploy

Feedback

ResiliencySafety Reliability
Validate

Digital twin

Network management with digital twins

• Digital twins
– Digital copy in virtual environment for testing and simulation

• Network emulation (digital twins of networks)
– Verify safety and fault tolerance of networks without affecting the

network services

Our research focus

Configuring emulation networks

• Problem: Time-consuming to construct emulation networks
– We cannot use production network configuration directly
• Difference of devices or softwares -> Difference of configuration formats
• Difference of parameter assignment such as IP addresses

– It is time-consuming to configure large-scale networks
• Describe a bunch of config lines similar to other devices or interfaces
• Using “copy-and-paste” strategy sometimes cause errors due to a lack of

consideration of parameter changes

3

Example of configuration failures
for emulation networks

4

Duplicated interfaces

Inconsistent specification

https://github.com/tinynetwork/tinet/pull/86

• TiNET [1]

– Platform for Docker-based
emulation networks

– Provide various example
network configurations

Spine1

Leaf1 Leaf2 Leaf3 Leaf4

Spine2

Serv1 Serv2 Serv3 Serv4 Serv5 Serv6 Serv7 Serv8

Example topology (3-tier CLOS)

Official configuration example of TiNET

[1] TiNET, https://github.com/tinynetwork/tinet/

Batch configuration of network devices

• Config templates
– Embed parameters to templates to configure multiple objects

• Difficulty in templating network configurations
1. Limitation of per-device templates
2. Difficulty for complicated network topologies

5

interface {{ .name }}
 ip address {{ .ip_addr }}/{{ .ip_plen }}
!

name = eth0
ip_addr = 192.2.100.1
ip_plen = 24

name = eth1
ip_addr = 192.2.101.2
ip_plen = 24

interface eth0
 ip address 192.2.100.1/24
!

interface eth1
 ip address 192.2.101.2/24
!

Config template
Objects with parameters Generated config

+

Difficulty in templating network configurations

6

ip forwarding
!
{% for interface in data.interfaces %}
interface {{ interface.id }}
 ip address {{ interface.ip }}/{{ interface.plen }}
!
{% endfor %}
{% if data.ospf.enabled %}
router ospf
 ospf router-id {{ data.loopback }}
{% for network in data.ospf.networks %}
 network {{ network }} area 0
{% endfor %}
{% endif %}
!

ip forwarding
!
router ospf
 ospf router-id {{ .ip_loopback }}
!

interface {{ .name }}
 ip address {{ .ip_addr }}/{{ .ip_plen }}
!
router ospf
 network {{ .ip_net }} area 0
!

dot2net NodeClass template block

dot2net InterfaceClass template block

Per-device template with control syntaxes

Node
Interface eth0
Interface eth1

Config blocks

Per-device
config

(a) Traditional templating approach (b) Proposed approach (dot2net)

Merging

Existing tools are per-device
Requires control syntaxes (for and if)

Expect appropriate granularity
templates without control syntaxes

1. Limitation of per-device templates

Difficulty in templating network configurations

2. Difficulty for complicated network topologies

7

Simple network topology:
Consider only one of both link ends
in parameter assignment

Complicated network topology:
- Necessary to consider combinations
of link ends in parameter assignment
- Much more parameter values

Static endpoint
Variable endpoint

Requirements for emulation network
configuration platform

• Description simplicity
– Efficient description without duplications

• Scalability for larger networks
– Automated parameter assignment
– Support large-scale networks (with hundreds of devices)

• Expressiveness for complicated networks
– Accept advanced technologies for emulation

Emulation network configuration platform dot2net that meets
description simplicity, scalability, and expressiveness

8

Research goal

Key idea: Separate network topology and configuration

RouterBGP iBGP OSPF

Topology graph

Labels

Config blocks

Per-device config

Target node
Interface Interface

9

• Network topology description
as a labeled graph
– Describe roles of devices or

interfaces with labels
– Generate config blocks with

templates corresponding to labels
– Obtain traditional per-device

config by merging config blocks
ØEasy to change topology by

modifying the labeled graph

Five design principles of dot2net

1. Separate network topology and configuration (Key idea)
2. Declarative config description (for simplicity)

ØEasy to validate with external tools

3. No control syntax macros in templates (for simplicity)
ØConfig template can be described in more simple format

4. Minimum manual parameter specification (for scalability)
ØAutomatically assign parameters -> Decrease human failures

5. Accept advanced network technologies (for expressiveness)
ØAvailable for testing new network technologies

10

Two challenges to meet design principles

Challenge 1: Automated IP address assignment
– Unlike other parameters, we need to consider subnet consistency
– How to handle advanced network technologies?
ØIssue 1: Automated IP address assignment considering network layers

Challenge 2: Relational parameter reference from templates
– How to refer parameters from templates without control syntax?
– e.g., Cannot refer parameters in lists because no “for” syntax
ØIssue 2: Relational parameter namespace

11

Overview of dot2net architecture

Label definitions

Topology
as labeled graph

Per-device
config model

Emulation config

Emulation network

Merge
and format

Assign
parameters

Embed variables
in templates

Template blocks Docker

Config files

Deploy with tools
(e.g., containerlab)

Bind
mount

Network model
with object instances

Convert
(1)

(2)

(3)

(4)
Config blocks

Merge
and format

(4)

Dot2net

12
Input Output

Issue 1. Automated
IP address assignment

Issue 2. Relational
parameter namespace

Issue 1. Automated IP address assignment
considering network layers

There are two major challenges:
A) How to determine IP subnets (network segments)
– Adjacent devices must have IP address of same IP subnet
– Some devices (e.g., L2 switches) do not have IP addresses

B) How to support advanced network technologies
– Advanced network protocols basically have network layers
– Layer-separated IP address assignment enables many of them

13

1.A) IP subnet decision algorithm

14
Interfaces with layer flag

Connection to
start searching

addr

Detected network segment

addr

addr

Detected segment boundary

Switch

Server

Server

Router Router

(a) A network topology with L2 switch

Server

Server

RouterRouter

Server

Server
(b) A network topology with L2 tunneling

Connection to
start searching

1.B) Layers in dot2net labeled graph

• Intuitive: Describe topologies by layers (Layer approach)
– Need to modify all layers when adding a device to topology
– Cause errors by emissions in modifications

• Proposed: Specify layers in label definitions (Label approach)
– Users only need to modify one labeled graph for topology changes

15

Layer A

Layer B

Labeled
Graph

Layer A Layer B

Layer approach
Need to modify all layers
for topology changes

Label approach
Need only to modify
one labeled graph

editedit

edit

Issue 2. Relational parameter namespace

Network model

Link

IPaddress SubnetName Interface

Neighbor
interface

Parent
node

Relational
namespace

Relations
in topology

Node

Parameters

Top-down data model Bottom-up namespace

Requires
iteration

16

• Traditional parameter data model is top-down
– Requires control syntax (for, if) to specify parameter placement

• Proposed parameter namespace is bottom-up
– Parameters are specified with relations to the object for config

generation (devices or interfaces)

Example of namespace

17

r1 {{ .name }} = r1
r1.net0 {{ .ip_addr }} = 10.0.0.1
r1.net0 {{ .ip_net }} = 10.0.0.0/24
r1.net0 {{ .ip_plen }} = 24
r1.net0 {{ .name }} = net0
r1.net0 {{ .node_name }} = r1
r1.net0 {{ .opp_ip_addr }} = 10.0.0.2
r1.net0 {{ .opp_ip_net }} = 10.0.0.0/24
r1.net0 {{ .opp_ip_plen }} = 24
r1.net0 {{ .opp_name }} = net0
r1.net0 {{ .opp_node_name }} = r2
r2 {{ .name }} = r2
r2.net0 {{ .ip_addr }} = 10.0.0.2
r2.net0 {{ .ip_net }} = 10.0.0.0/24
r2.net0 {{ .ip_plen }} = 24
r2.net0 {{ .name }} = net0
r2.net0 {{ .node_name }} = r2
r2.net0 {{ .opp_ip_addr }} = 10.0.0.1
r2.net0 {{ .opp_ip_net }} = 10.0.0.0/24
r2.net0 {{ .opp_ip_plen }} = 24
r2.net0 {{ .opp_name }} = net0
r2.net0 {{ .opp_node_name }} = r1
...

r1 r2
net0 net0

10.0.0.1

“ip_addr” is
10.0.0.1

opposite “ip_addr” is
10.0.0.1

dot2net implementation

• Implemented in Go language, publicly available as OSS
– https://github.com/cpflat/dot2net

• Input: A labeled graph (DOT) and label definitions (YAML)
• Output: Config files for Docker-based network emulation

platforms such as Containerlab or TiNET
– Including emulation network structure and router software settings

• Dot2net can automate deploying emulation networks by
collaborating with above network emulation platforms

18

Evaluation of dot2net

• Performance evaluation (Scalability)
– Evaluate processing time for generating configuration files of large-

scale CLOS networks with hundreds of devices
• Description efficiency evaluation (Description simplicity)
– Describe five testing network for FRRouting with dot2net
– Evaluate configuration changes (bytes) on simple topology changes

• Expressiveness evaluation (Expressiveness)
– Discuss how to describe network topologies with advanced

technologies on the above testing networks

19

Performance evaluation (processing time)

20

 0.01

 0.1

 1

 10

103 104 105 106

P
ro

ce
ss

in
g
 t
im

e
 (

se
c)

Number of links

100

200

300

400

500
600

700
800

900
1000

Number of
nodes

3-tier CLOS networks (100 nodes)

64 nodes

32 nodes

4 nodes

T1

T2

T3
← Complete links

← Complete links

Dot2net can generate config files
of a network with 1,000 devices
only in 3.5 seconds

Note: containerlab takes more than 5 minutes
to deploy a network with 100 deviceslog-log scale

Description efficiency evaluation (bytes)

21

(+1) means
one node and one link

are added to the topology

(diff) is the difference of
configuration files
on the expansion

Additional config
description is reduced to

less than 10%

Discussion

• Dot2net does not depend on specific network protocol
– Many existing methods [3,4] only support limited protocols (e.g., BGP)
– Dot2net just generate config description -> no protocol limitation

• It is still difficult to handle some technologies with dot2net
– ACLs (depend on service policy rather than network topology)
– Source routing policies (DOT cannot describe paths)
– Value lists (not reasonable for one-to-one parameter namespace)

22
[3] S. Knight et al. “An automated system for emulated network experimenta tion,” in Proceedings of CoNEXT ’13, pp. 235–246, 2013
[4] R. Beckett et al. “Don’t mind the gap: Bridging network-wide objectives and device-level config urations,” in Proceedings of
SIGCOMM ’16, pp. 328–341, 2016

Future work

• Incremental config deployment
– Dot2net currently generate all config files

for each time of topology changes
– Due to emulation platforms such as

Containerlab and TiNET

• Reverse conversion from existing config
– Support topology changes of existing

network configurations
– Support config anonymization (for data

publication)
23

Config (YAML)

Topology (DOT)

Dot2tinet
per-device config model

Reverse
conversion

Dot2tinet

Config templates

Existing
configuration files

Dot2tinet input

(Anonymization)

Reverse conversion

Conclusion

• Proposed design and implementation of dot2net, a template-based
configuration platform
– For simple, scalable, and expressive configuration description
– Separate network topology as labeled graph and label definitions as config

template blocks
– Available in https://github.com/cpflat/dot2net

• Demonstrate the effectiveness in performance and description
efficiency with test topologies for FRRouting
– Dot2net generates network configuration files with a thousand of devices in

3.5 seconds
– Dot2net reduces the increase in config file size to less than 10%

24

25

Object classes in dot2net

26

Example of automated IP address assignment

27

r1

10.0.0.0/24
2001:db8::/64

net0

net0
2001:db8::1

10.0.1.0/24
2001:db8:0:1::/64

net0

net1
2001:db8:0:1::1 r2

10.0.1.0/24
2001:db8:0:1::/64
net1

net1
2001:db8:0:1::3

10.0.2.0/24
2001:db8:0:2::/64

net0

net0
2001:db8:0:2::1 r3

10.0.1.0/24
2001:db8:0:1::/64

net2

net0
2001:db8:0:1::2

10.0.3.0/24
2001:db8:0:3::/64

net0

net1
2001:db8:0:3::1

10.0.4.0/24
2001:db8:0:4::/64

net0

net2
2001:db8:0:4::1 r4

10.0.4.0/24
2001:db8:0:4::/64

net1

net0
2001:db8:0:4::2

10.0.5.0/24
2001:db8:0:5::/64

net0

net1
2001:db8:0:5::1

area=0; area6=0.0.0.0 area=1; area6=0.0.0.1

r1

s1 s3

r2

s2

r3

s4 s5

r4

s6

Four routers

Six switches

Input
network
topology

(ospf_topo1)

IP address assignment (IPv4/IPv6 dualstack)

Expressiveness – IP addressing issue

• IP dual stack
– “ospf_topo1” scenario is IPv4/IPv6 dualstack
– Works well, shown as an example

• VXLAN
– “bgp_evpn_vxlan_topo1” scenario depends on VXLAN
– Separate IP layer and IP-over-VXLAN layer

28

Automated IP addressing for VXLAN network

29

Interfaces with layer flag

Connection to
start searching

addr

Detected network segment

addr

addr

Detected segment boundary

Switch

Server

Server

Router Router

(a) A network topology with L2 switch

Server

Server

RouterRouter

Server

Server
(b) A network topology with L2 tunneling

Connection to
start searching

Two logical links
on VXLAN connection

Expressiveness – Namespace issue

• BGP Neighbor
– “bgp_features” scenario includes both BGP and non-BGP routers/switches

• Require parameters of L3 neighbor devices which can be more than one
– Define Neighbor subclass that belong to Interface classes

• The subclass will generate as many config blocks as the L3-neighboring objects

• Stub network
– “rip_topo1” and “ospf6_topo1” scenarios has mixed routing policies of

dynamic routing and static routing (stub)
– Put virtual nodes on the topology

• No configuration but available parameters of the virtual nodes in namespace

30

Comparison with existing methods

31

• Dot2net satisfies all of description simplicity, scalability,
expressiveness as explained

• Existing approaches have limitation mainly on expressiveness
(supporting limited protocols or environment)

