
This is the peer reviewed version of the following article: Satoru Kobayashi, Yuya
Yamashiro, Kazuki Otomo, Kensuke Fukuda, “amulog: A General Log Analysis
Framework for Comparison and Combination of Diverse Template Generation
Methods”, International Journal of Network Management, Wiley, vol.32, no.4,
2022, which has been published in final form at http://doi.org/10.1002/nem.2195.
This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions. This article may not
be enhanced, enriched or otherwise transformed into a derivative work, without
express permission from Wiley or by statutory rights under applicable legislation.
Copyright notices must not be removed, obscured or modified. The article
must be linked to Wiley’s version of record on Wiley Online Library and any
embedding, framing or otherwise making available the article or pages thereof
by third parties from platforms, services and websites other than Wiley Online
Library must be prohibited.

1

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

amulog: A General Log Analysis Framework for Comparison and
Combination of Diverse Template Generation Methods †

Satoru Kobayashi*1 | Yuya Yamashiro2 | Kazuki Otomo2 | Kensuke Fukuda1,3

1National Institute of Informatics, Tokyo,
Japan

2Graduate School of Information Science
and Technology, The University of Tokyo,
Tokyo, Japan

3Graduate University for Advanced Studies,
Sokendai, Tokyo, Japan

Correspondence
Satoru Kobayashi, the National Institute of
Informatics, Tokyo, Japan.
Email: sat@nii.ac.jp

Funding Information
This research was supported by the
MIC/SCOPE #191603009.

Summary

One of the ways to analyze unstructured log messages from large-scale IT systems is
to classify log messages with log templates generated by template generation meth-
ods. However, there is currently no common knowledge pertained to the comparison
and practical use of log template generation methods because they are implemented
on the basis of diverse environments. To this end, we design and implement amulog,
a general log analysis framework for comparing and combining diverse log template
generation methods. Amulog consists of three key functions: (1) parsing log mes-
sages into headers and segmented messages, (2) classifying the log messages using a
scalable template-matching method, and (3) storing the structured data in a database.
This framework helps us easily utilize time-series data corresponding to the log tem-
plates for further analysis. We evaluate amulog with a log dataset collected from
a nation-wide academic network and demonstrate that it classifies the log data in
a reasonable amount of time even with over 100,000 log template candidates. The
template-matching method in amulog also reduces 75% processing time for template
generation and keeps the accuracy when combined with an existing structure-based
template generation method. In order to show the effectiveness of amulog in compar-
ing log template generation methods, we demonstrate that the appropriate template
generation methods and accuracy metrics largely depend on the purpose of further
analysis by comparing the accuracy of six existing log template generation methods
with ten different accuracy metrics on amulog.

KEYWORDS:
Network management, Log analysis, Log parsing, Log clustering, Framework

1 INTRODUCTION

System and network operators need to maintain high availabil-
ity of IT infrastructures by means of efficient troubleshooting.
For troubleshooting, we rely on many kinds of operational
data. Log data is one of the most effective data sources for this
because, unlike other measurable data, it provides contextual
information of system behaviors as literal explanations. How-
ever, log data from large-scale information systems is too large

†This paper is an extended version of work published in Ref. 1

to investigate manually. For example, SINET52, a research and
education network in Japan, reports about 150,000 log lines in
a single day. We need automated analysis methods and tools
for analyzing such large-scale log data.

Automated analysis of log data is also difficult because a
log message includes an unstructured statement (i.e., MSG in
syslog3). Figure 1 shows an example of unstructured log mes-
sages. The message consists of a structured header part and an
unstructured statement part. The structured header describes
general information of the appeared event, such as time, place,

2 KOBAYASHI ET AL

Jan 1 12:34:56 host-device1 \kernel: xe-4/3/1: DAD detected duplicate IPv6 address 2001:0db8::1 NS in/out=3/3, NA in=0

Timestamp Hostname

Header part Statement part

\kernel ** DAD detected duplicate IPv6 address ** NS in out ** ** NA in **

Segmented statement

\kernel xe-4/3/1 DAD detected duplicate IPv6 address 2001:0db8::1 NS in out 3 3 NA in 0

Log template

Log parsing

Template generation Template matching

FIGURE 1 Example of log messages as the input of amulog.

and sometimes the classification of the event. The unstruc-
tured statement is the main part to describe what happens.
The statement is designed for human readability but not rea-
sonable for automated event identification. A major approach
to analyze unstructured log data is generating log templates.
A log template is a format of unstructured statements in log
messages. Log messages belonging to a log template usu-
ally contain information on a common system behavior, so
template generation is an effective way to classify log mes-
sages with their behaviors. In contrast to full-text search4,5,6,
which is another major approach used for keyword-based anal-
ysis, the template-based approach is suitable for aggregating
and digesting the system behaviors, enabling time-series-based
quantitative analysis such as anomaly detection7,8,9,10,11 and
root cause analysis12,13,14,15.

Many log template generation methods have been pro-
posed in past literature16,17. These methods are based on
diverse approaches such as source code analysis18,19,20, cluster-
ing21,22,23,24,25,26,27, prefix-tree approaches28,8,29, and machine
learning30,31. As log data plays an important role in multiple
IT fields, the template generation methods also have a diver-
sity of assumptions, such as online and offline processing. The
difference of assumptions sometimes prevents operators and
developers from determining whether the methods match their
use in a consistent manner. Therefore, we need a general frame-
work for automated log analyses that does not depend on a
specific log template generation method.

In addition, the log template generation methods are eval-
uated in disparate ways in the past works (see section 5). For
example, past works have used disparate accuracy metrics such
as the Rand Index7,29,32, pairwise F-measure22,33, and parsing
accuracy27,34. Due to the difference, it is difficult for operators
to compare and select log template generation methods with
the literature. In our experience, the appropriate accuracy met-
rics depend on the further use of generated log templates. We
need to re-organize the common knowledge of how to com-
pare and evaluate log template generation methods fairly and
consistently.

In this paper, we propose amulog, a general framework
for template-based log analysis. As a unique feature, amulog

consistently uses segmented log statements. Intuitively, log
messages are considered as a string and use regular expressions
for template matching. However, template matching based on
regular expressions is not efficient in terms of the processing
time (details in section 4). By applying a constant message
segmentation, we can handle the data flow more simply. In
addition, the messages segmented with the common rules
can be used by multiple template generation methods in a
same manner. Therefore, we can easily compare and combine
multiple template generation methods on amulog.

Figure 2 shows the schematic system architecture of amu-
log. The key functions provided by amulog are threefold: (A)
parsing log messages into headers and segmented statements
with a rule-based parser log2seq35, (B) classifying log mes-
sages with log templates by a tree-based scalable algorithm,
and (C) storing the parsed data in a database that enables search
and aggregation for further analysis. Two processing modes
are available on amulog: online processing for real-time analy-
sis and offline processing for hindsight analysis. We implement
amulog as open-source software36.

First, we discuss the existing log analysis frameworks and
their problems. Next, we discuss the design and implemen-
tation of amulog to show its effectiveness in practical log
analysis (section 3). Then, we evaluate amulog in terms of
log template matching performance with a real log data from
SINET437, a nation-wide academic network (section 4). We
confirm that the proposed tree-based algorithm in amulog
matches and classifies log messages with given log templates
in a reasonable amount of time even if the number of given
templates is more than 105. In addition, we conduct a com-
parison of six log template generation methods to determine
the applicability of amulog to various algorithms (section 5).
This comprehensive comparison work is a main new contri-
bution from the original paper1. Through the comparison, we
provide a number of findings on how to compare log template
generation methods; In summary, we need to select appropri-
ate measurement procedure and accuracy metrics considering
the further usage of generated templates. In the compari-
son, we demonstrate that combining our template matching
method with existing log template generation methods largely

KOBAYASHI ET AL 3

Original
log data

Monitored
devices Header

Timestamp,Host

Statement
Seq. of words

Log instances
belonging to templates Database

Further
analysis

Log
parsing

Apr 20 11:22:33 sv1: user sat logged in from 192.0.2.5 user ** logged in from **
example example

user sat logged in from 192.0.2.5
example

Template
generation

Modules
Template
matching

Templates

(A)

(B)

(C)

FIGURE 2 Overview of proposed log analysis framework.

decreases the processing time and in some cases improves the
accuracy of template generation. In particular on the extended
version of existing CRF-based template generation method30,
the template matching reduces 75% processing time and keeps
the accuracy. Finally, we discuss the practical availability of
amulog (section 6) and summarize the paper (section 7).

The contributions of this paper are as follows. (1) We design
and implement a general log analysis framework for compar-
ing and combining multiple log template generation methods.
(2) We propose a scalable template-matching algorithm, which
can improve the performance of other log template generation
methods when combined. (3) We provide a guideline for com-
paring and selecting the template generation method through
our comprehensive comparison work.

2 RELATED WORKS

Some earlier works have proposed log analysis frameworks
and platforms for monitoring computer systems. Logstash38

and Napalm-logs39 are popular tools widely used in commer-
cial networks and services. These tools can parse unstructured
logs into structured data, but they need pre-defined log for-
mats for all log events to be parsed. It is a hard task for system
operators to define all the log formats manually.

The other approach, without pre-defined log formats, is the
full-text search based on Elasticsearch40. Bai4 proposed a real-
time log search engine with Elasticsearch and HBase. Cuong
et al5 constructed a log management system with LogStash38

and Elasticsearch, where LogStash functions as a formatting
and forwarding engine of the log messages using rule-based
filters41. Futhermore, Hayabusa6 is a full-text search engine
for log data based on a distributed and parallelized SQLite
database. These approaches focus on the full-text search of
massive log data and are not appropriate for template-based log
analysis (i.e., event-oriented time-series analysis) because it is
difficult to extract log instances for a template with a keyword
search.

Other works have discussed the selection of log template
generation methods for log analysis. El-Masri et al.16 reviewed
17 state-of-the-art log template generation algorithms selected
from 89 research papers. Landauer et al.17 surveyed more
than 50 articles about log template generation methods. These
works are simple qualitative comparisons based on paper sur-
veys but are nevertheless helpful to select template generation
methods. There are multiple frameworks with automated log
template generation such as FLAP42 and AECID-PG43, but
they are basically implemented for one particular log template
generation method.

Similar to our work, Zhu et al.34,33 implemented log-
parser44, a framework to compare the accuracy of log template
generation methods. They conducted a quantitative compar-
ison of 13 log template generation methods with open log
datasets of supercomputers and applications. However, log-
parser does not provide functions for further log analysis
(such as template matching) and does not support combi-
nation of template generation methods (i.e., logparser does
not satisfy the amulog’s requirements (A)-(C), explained in
subsection 3.1).

3 AMULOG

3.1 Requirements
There are three requirements for a general log analysis frame-
work.

(A) The framework needs to preprocess the messages uni-
formly before applying log template generation methods. Most
of the log template generation methods use segmented log
messages (i.e., a sequence of words), but many practical log
messages cannot be segmented by simple methods (details in
subsection 3.3). In addition, the difference of segmentation
rules among the template generation methods prevents us from
combining and comparing them in a consistent manner. A suit-
able log segmentation rule depends on the dataset rather than
the template generation method, so we need log segmentation
functions not in the method but in the framework.

4 KOBAYASHI ET AL

sshd user sat login

Original format
(Conventional)

Segmented format
(AMULOG)

sshd: user “sat” login sshd: user “ ” login**

sshd user login

Log statement Log template

**

Conventional
template matching

Efficient
template matching

Original log statement

Segmented log statement Segmented log template

Log template

segmentation
Costly

FIGURE 3 Difference of data format between amulog and
conventional systems.

(B) The framework needs to match log messages with exist-
ing log templates. A log analysis framework should consider
various use cases, such as accurate log templates being par-
tially available without template generation or manual tem-
plate modification required for precise analysis. Log template
matching enables the framework to remap log templates and
their instances to satisfy these practical requirements.

(C) The framework needs to provide the parsed and classi-
fied data in an appropriate style for further analysis, as system
operators intend to search log data with the appropriate schema
for their troubleshooting in mind.

3.2 Overview of amulog
To satisify these three requirements, we propose amulog, a
general framework for template-based log analysis, which is
mainly designed for comparison and combination of diverse
log template generation methods. The key idea of amulog is
to use segmented log statements and segmented log templates
consistently. Figure 3 shows an example of the segmented
log data. Many log template generation methods use some
word segmentation techniques in their template generation
processes, but the implementations of these methods finally
restore the segmented templates to the original format21,34. In
contrast, we keep the log statements segmented and store them
in a database. By applying a constant message segmentation,
we can handle the data flow more simply and compare (or
combine) template generation methods in a consistent manner.

Figure 2 illustrates the system architecture of amulog.
It has three main components corresponding to the three
requirements: (A) log parsing, (B) template matching, and (C)
database storing. Amulog assumes line-based log data col-
lected from multiple devices using logging platforms such as
syslog as the input. The log data must contain at the very least
a time stamp, source hostname, and free-format statement (for
more details, see section 6). Users can search and aggregate the
log messages with time stamp, hostname, and template iden-
tifier from the database storage by means of amulog functions
afterward.

Here, we explain the data flow of amulog in the case of
online processing (e.g., amulog incrementally receives a log

message as an input). Amulog first parses an input log mes-
sage into header items (i.e., time stamp and hostname) and a
sequence of words corresponding to the free-format log state-
ment with in the log parsing component (log2seq). Next, amu-
log determines a corresponding log template for the segmented
statement by means of log template generation modules (i.e.,
estimates log templates dynamically) or log template matching
(i.e., uses pre-generated log templates). Finally, amulog stores
the data structured with the above two steps in a database.
The stored data includes time stamps, source hostnames, log
template identifier, and all words in the statement.

In amulog, the existing log template generation methods are
considered as the modules for log template generation. A tem-
plate generation module receives a log message as an input,
and output the corresponding log template (and its template
identifier). Log template matching with known templates can
also be treated as one of the log template generation mod-
ules because they have common input and output. Therefore,
they can be easily compared and combined in a consistent
manner. Log template generation methods are combined in
pipeline style; the first module tries to generate a log template
for the input, and if it fails the second module tries (e.g., basi-
cally using template matching, and estimating log templates
for unfamiliar log messages).

3.3 Log parsing
Log messages have two parts of information in each line: a
structured header part (e.g. time stamp and source hostname)
and an unstructured statement part (e.g., event description)
The format of the header part depends on the configuration of
the logging system (the same as syslog3). The statement part
is free-format, but basically has a potential template because
system programs output the log statement by filling the replac-
ers (e.g., format specifiers) in the template with variables.
For human readability, the statement part is usually semi-
formalized (i.e., partially using natural language), so in many
cases it can be segmented into a sequence of words, just
like other languages can be. Many log template generation
algorithms use this feature of the statement part.

One simple approach is defining separator symbols43 for
datasets. However, there is a problem with the word segmenta-
tion process of the log template generation; some log messages
are inconsistent with the usage of symbol strings. The inconsis-
tent symbol strings can be uses as both the separators of words
and part of the variables. Figure 1 shows an example of such
log messages in our real dataset in which some of the sensitive
variables (such as IP addresses) have been replaced. Focusing
on the slash symbols (“/”), some of them are used as separators
of words, while others are part of the variable, which is an inter-
face name in this case. If we split the statement with a word

KOBAYASHI ET AL 5

segmentation rule that uses slashes as separators, the interface
name “xe-4/3/1” will be torn into smaller pieces that lose the
information of interface. In contrast, if we leave the slash in
the word segmentation, the words “in” and “out” are not avail-
able in the log template generation and further analysis. In this
example, colon symbols (“:”) also cause a similar problem. No
single static rule can parse this log statement correctly.

In response to this issue, we propose log2seq, a rule-based
log message parser that converts string log messages into
headers and segmented log statements. The configuration for
log2seq consists of two rules: the header parsing rule and the
statement segmentation rule. The header parsing rule is a sim-
ple regular expression to parse the header information, which
helps amulog accept diverse header format of log messages as
input. The statement segmentation rule is a collection of mul-
tiple actions for word segmentation. The key idea of log2seq in
statement segmentation is to fix known variable words includ-
ing inconsistent symbol strings (e.g., “xe-4/3/1” in Figure 1)
while parsing. The actions can be classified into two types:
SPLIT and FIX. A SPLIT action is a rule to separate words
segmented by some separators. The rule is specified with a
regular expression of separator symbol strings. A FIX action
is a rule to specify words that should not be segmented fur-
ther. This rule is specified with some regular expressions of
known variable words. The user customizes the configura-
tion of these rules by modifying the orders and corresponding
regular expressions in these actions.

For example, a sample configuration of log2seq consists of
four steps. (1: header parsing rule) First, we parse the header
part using a static rule of regular expressions. (2: SPLIT action)
Next, we split the statement part (the remaining part after
removing the header part) into word sequences using standard
separator symbols (e.g., spaces and brackets). (3: FIX action)
Then, we fix the known variable words that should not be
separated later (e.g., IPv6 address). (4: SPLIT action) Finally,
we split the words by inconsistent symbols (e.g., slashes and
colons). These rules can parse log messages including incon-
sistent symbols such as Figure 1 as expected.

In our experience, the configuration of log2seq largely
depends on the vendor of the devices and applications. Still,
the configuration can be easily shared in engineer communi-
ties because it does not include any internal information of the
systems and devices.

The source code of log2seq is publicly available on
GitHub35, and can be easily installed as a PyPI package.

3.4 Template matching
Log template generation must deal with two issues: determin-
ing the log template structure (structure issue) and classifying
the log messages with the templates (classification issue).

Solving the structure issue enables us to obtain an abstracted
log representation and to determine variable words in tem-
plates. These are important when we compare variables in
the messages and apply NLP-based log analysis methods that
focus on descriptive messages10,11. On the other hand, solving
the classification issue is required for event-oriented time-
series analysis. Many existing works based on network log
analysis (including anomaly detection7,8,9,10,11 and root cause
analysis12,13,15) classify log messages with log templates to
generate the time series of log events.

However, not all template generation methods satisfy both
issues. For example, a set of generated templates from source
code analysis18,19,20 is not mapped to the real log messages
(i.e., does not solve the classification issue). These methods
need template matching to use classified log data in further
analysis. Another example appears when we use external log
template lists (e.g., third-patry documents) for log analysis.
Such template lists are usually not mapped to our log messages.
Furthermore, in practical terms, we would need to modify
log templates generated automatically by some methods if
they have any errors. Editing log templates usually breaks
the consistency of models for automated template generation,
so log template matching is required to re-map the modified
templates to the log messages.

To design a log template-matching method, it is important to
consider the scalability of the log template matching to accept
diverse template generation methods. Log data from large-
scale systems have a large number of potential log template
candidates (much more than the number of appearing log tem-
plates in actual logs), which prevents fast template matching.
Also, the number of template candidates can be larger if the
templates are generated automatically and include any errors.

A straightforward approach for log template matching is to
use regular expressions. However, template matching based
on regular expressions is not efficient because a log template
usually includes multiple variables. For example, some log
templates found in our dataset (see subsection 4.1) have more
than ten variable words in one log statement. The degree of
freedom of the regular expressions is too large for efficient cal-
culation. Besides, the computation complexity is 𝑂(𝑛) in the
straightforward approaches, where 𝑛 is the number of the log
templates for template matching.

To resolve this issue, we propose a log template-matching
algorithm based on a prefix-tree. In this algorithm, we first
make a search tree of the given log templates, as shown in
Figure 4. Every node has a word or a wildcard, and some
nodes have a log template identifier that indicate the end of
the templates. This tree consists of three log templates: “user
** logged in from **”, “user name invalid”, and “user name
** removed” (“**” represents a variable word). The search-
ing algorithm is a kind of depth-first one: the search process

6 KOBAYASHI ET AL

(root)
user

name **name
invalid **

removed
logged

in
from
**

tpl

tpl

tpl

(1) (2)

×

FIGURE 4 Example of a template search tree.

starts from the root node and the next node is determined
by matching the words with the nodes from the top of the
input statement. There can be several potential branches of the
searching paths because some nodes are the wildcard for vari-
able words. In that case, we first select a node with a static
word and then search another node with a wildcard. If there
is no next matching node, the searching path is discarded and
searching for the next path begins. If the node after passing all
words in the input statement has a log template identifier, the
searching process finishes.

For example, assume the log statement “user name logged
in from 192.0.2.5” is given for matching with the tree in
Figure 4 (it is unlikely, but this is just an example). First, amu-
log traces branch (1) and fails with the fourth word “removed”.
Next, amulog traces branch (2) and succeeds to obtain a cor-
responding log template identifier. Finally, amulog obtains a
log template identifier registered at the end of branch (2) as an
identifier corresponding with the input.

The computational complexity of the tree-based template-
matching method is 𝑂(2𝑚) in the worst case where 𝑚 is the
number of words in the input statement. This is because of the
forks formed by the wildcard nodes in the search tree. How-
ever, it is a rare case that amulog needs to search for multiple
paths for a log message with practical log templates. The paths
to be searched increase only when a word matches both nodes
of the equal static word and that of a wildcard, but template
generation methods usually unify them because most of the
words in log messages are used for either a static word or a vari-
able. In addition, 𝑚 is typically small enough in practical log
templates (13 words on average in our ground truth templates).

3.5 Data storage
We also need to consider the schema of the database storage.
Currently amulog supports SQLite or MySQL as data stor-
age. Amulog records the time stamp, source hostname, and
template identifier of each log message for further analysis.
The time stamp and the hostname are parsed with log2seq.

The template identifier is determined by means of log template
matching or log template generation.

Also, amulog records all words in the log statement for
detailed analysis. Intuitively, it would seem that we only need
to record variable words instead of all words in the log state-
ment. However, some template generation methods (especially
incremental methods based on clustering approaches, such as
Drain27) change the definition of the log templates afterward.
If we only record the variable words in the log statement, the
definition change of the log templates will destroy the data
structure. In addition, by recording all words, we can manually
edit the log template definitions afterward (see section 6).

3.6 Implementation
Amulog is implemented in Python 3. The source code of
amulog is available on GitHub36.

Amulog provides two processing modes: online and offline.
Online processing is designed for continuous data collection
and real-time log analysis. The online processing works with
small memory costs and supports interruption and resump-
tion of template generation. Offline processing is designed for
hindsight analysis. The offline processing works with all tem-
plate generation methods, and some of them support parallel
processing (see section 5). Amulog currently supports multi-
ple log template generation methods including online methods
(e.g., Drain27, LenMa45, FT-Tree8, and CRF30) and offline
methods (e.g., Dlog29). Amulog also supports parallel process-
ing (including log parsing and template matching) for offline
processing.

4 EVALUATION

4.1 Dataset
We use a set of backbone network syslog data obtained from
SINET437 to evaluate amulog performance (in this section)
and conduct further analysis (section 5). SINET4 is a nation-
wide R&E network connecting over 800 organizations in
Japan. The network consists of eight core routers and over 100
Layer-2 switches provided by multiple vendors.

We manually generate ground truth log templates for the
dataset. There are 1,788 different log templates in 15 months
of log data (35 million lines in total). Figure 5 shows the num-
ber of log instances in the dataset. This empirical distribution
is long-tailed in log-scale, which means most log messages
belong to only a small number of log templates.

In the following experiments, we use an Ubuntu 18.04 server
(x86_64) equipped with an Intel(R) Xeon(R) Silver 4110 (2.10
GHz) and 64 GB of memory.

KOBAYASHI ET AL 7

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u

m
b

e
r

o
f

lo
g

 t
e

m
p

la
te

s

Number of log instances for 1 log template

FIGURE 5 Log-log-scale histogram of log instances in our
dataset.

4.2 Log template matching
We demonstrate the scalability of the proposed template
matching method to the number of log template candidates
by the comparison of the processing times of various log
template-matching approaches.

Four template-matching approaches are used for the com-
parison: TREE, TABLE, RE, and RE-Hash. TREE is our pro-
posed tree-based method described in subsection 3.4. TABLE
is a simple method for segmented log messages. It searches the
corresponding template with the same length (i.e., the same
number of words) of log statement and matches all words
except wildcards. TREE and TABLE depend on the message
segmentation (i.e., use log2seq). RE uses regular expressions
for template matching. We automatically generate a regular
expression for a given log template. RE-Hash is also based on
regular expressions, but it classifies the regular expressions by
the hash of initial characters in the log statement (we use five
characters; e.g., “/kern” in Figure 1) to decrease the number
of regular expressions to match a message. RE and RE-Hash
do not translate the input log statements into a sequence of
words. The computational complexity of TABLE and RE is
𝑂(𝑛), where 𝑛 is the number of given log templates.

For the comparison, we measure the average processing time
over ten trials with shuffling the order of the log template can-
didates to generate the matching models. This is because the
processing time of some template-matching methods (espe-
cially TABLE and RE) depends on the order of the given
log templates. As explained in subsection 4.1, most log mes-
sages belong to only a small number of templates. Therefore,
if the frequently appearing templates were on the top part
of the given templates, linear search methods (TABLE and
RE) would succeed in matching the messages in a very short

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

Number of candidate templates

TREE
TABLE

RE
RE-Hash

FIGURE 6 Processing time of template-matching methods.

amount of time. That is why we need to shuffle the templates
for a fair comparison.

We also generate six template sets for the comparison using
the implemented log template generation methods 1. We eval-
uate the processing time to generate an amulog database from
1-day log data (76,719 lines, a part of the testing data in
section 5) with the four different template-matching methods.
The processing time includes all of the standard amulog pro-
cesses: initializing the matching model from the templates,
parsing input messages with log2seq, classifying the messages
by the template matching, and generating a database.

Figure 6 shows the log-log-scale comparison of the pro-
cessing time with the four template matching methods. As
explained above, the measured processing time is the average
of ten trials with shuffled templates and the error bars show
their standard error. Our proposed method, TREE, took about
40 seconds even if more than 105 templates were given as
template candidates 2. We can see that the difference in the
processing time was small with a smaller number of template
candidates, but this difference became larger for more tem-
plate candidates. The processing time of template matching
with TREE was nearly constant, and the increase for larger
template candidates stemmed from the model initialization
step (because the number of given templates was larger than
the number of log messages). The processing time of TABLE
depended largely on the number of templates, but even so it
was faster than RE and RE-Hash. This is because the message
segmentation enabled us the partial matching of messages. On
the TABLE algorithm, we do not need to match all words in
a template if the top word is neither a matching word nor a
wildcard. In contrast, RE and RE-Hash need to match all of

1The six methods are Manual, Drain, Match+CRFe, CRFe, RegEx, and CRF.
These methods are introduced in section 5. The number of templates is 1,504, 2,726,
5,108, 10,793, 26,986, and 215,934, respectively.

8 KOBAYASHI ET AL

TABLE 1 Log template generation algorithms for comparison

Method Online Offline Parallel Preparation
Drain27 3 ✓ ✓ –
LenMa45 ✓ ✓ –
FT-tree29 ✓ ✓ scanning 4

Dlog8 ✓ –
RegEx ✓ ✓ ✓ –
CRF30 ✓ ✓ ✓ training

the message with the regular expressions, as wildcards in regu-
lar expressions allow any length of variable. Besides, RE-Hash
was not effective compared to RE in this result. In our dataset,
most templates in the larger template sets start with variable
wildcards, so the hash of initial characters cannot decrease
the candidate templates for matching. In summary, the amulog
design with segmenting messages is effective for efficient tem-
plate matching, and the proposed tree-based method improves
the scalability of template matching.

The scalable log template matching is also helpful to fast
template generation by the combination of template matching
and template generation methods (see subsection 5.4).

5 APPLICATION

To determine the applicability of amulog to various template
generation methods, we demonstrate a comparison of existing
log template generation methods with the dataset explained in
4.1.

5.1 Template generation methods for
comparison
We compare six different existing methods, consisting of
cluster-based and structure-based methods, as shown in
Table 1.

The first four methods are cluster-based, classifying log
messages into clusters on the basis of message similarity and
heuristics. Drain27 is an online template generation method
based on heuristics and clustering with common words.
LenMa45 is an online method using the character length of
words for message clustering. FT-tree29 is an online method

2The amulog implementation is highly improved from the past paper 1, and now
it only takes less than 50% processing time compared with the previous version.

3POP 46, an extended method of Drain, is offline-only but can be processed in
parallel.

4In online processing, FT-tree requires a static scan of all or at least a part of
the log data to survey word appearance distribution.

with a tree-based method that prunes minor words as vari-
ables. Dlog8 is an offline method with a tree-based clustering
and aggregation of common parts. LenMa and FT-tree use the
heuristic knowledge that a top word is always a part of the tem-
plates. We disable this heuristic rule in the algorithms because
the messages in our dataset often start with variables. As Drain
also uses this knowledge, we leave it available because it avoids
failures with top variables by preprocessing for commonly
used variables (digit values).

The latter two methods are structure-based. In these meth-
ods, template generation is considered as a problem to classify
words in log messages into descriptions (i.e., words to form
templates) and variables (i.e., words replaced into wildcards
in the templates). RegEx is a simple method based on regular
expressions. We manually created regular expressions for com-
monly used variables in log messages (digits, timestamps, IP
addresses, MAC addresses, and interface/device names). We
consider words matched with the regular expressions as vari-
ables and other words as descriptions. CRF47,30 is an NLP-like
approach that estimates template structures (i.e., descriptions
and variables in a log message) for log messages. CRF requires
manually labeled training data for supervised learning, but for
tagging, it does not depend on other messages, which means
parallel processing can be easily applied. We also extended the
CRF-based template generation (CRFe) in two ways: (1) using
mid-labels generated by regular expressions (same as RegEx)
and (2) sampling training data for manual labeling with a pre-
liminary clustering by a simplified SLCT48 to learn more about
minor templates.

In addition, we used combined methods with the tree-based
template-matching method of amulog. As the method combi-
nation in amulog is implemented as a pipeline processing for
each line, the combined template generation is only available
for online methods (i.e., Dlog cannot be combined with tem-
plate matching). In the combined methods, the log template
matching enables to process log messages fast by matching
them to known log templates. A combined method conducts
log template generation as follows: Initially, there is an empty
log template search tree. For each input log message, the
method first searches existing templates with the tree. If not
found, the method generates a log template with the combined
existing method. Then the generated log template is added to
the search tree, and used for following input log messages.

5.2 Accuracy metrics and comparison settings

In this work, the accuracy of log template generation corre-
sponds to the comparison of the log template matching results
with the ground truth templates and the log template genera-
tion results with compared method. There also exist multiple

KOBAYASHI ET AL 9

TABLE 2 Accuracy metrics for log template generation.

Metrics Category Decision Count
Word accuracy (WA) 30 structure word label words
Line accuracy (LA) 30 structure line labels lines
Template accuracy (TA) 30 structure line labels templates
Template word accuracy (TWA) structure word label templates
Rand Index (RI) 49 cluster line pairs line pairs
Adjusted Rand Index (ARI) 50 cluster line pairs line pairs
Pairwise F-measure (Fm) 51 cluster line pairs line pairs
V-measure score (Vm) 52 cluster line entropy lines
Parsing accuracy (PA) 34 cluster exact match lines
Cluster accuracy (CA) cluster exact match templates

accuracy metrics for log template generation. Past works have
used disparate metrics such as the Rand Index7,29, pairwise
F-measure22,53,33,27,46,43, and parsing accuracy34. In this exper-
iment, we utilize the ten metrics shown in Table 2 (TWA and
CA are newly defined in this paper).

These accuracy metrics can be classified into two categories:
structure metrics and cluster metrics. Structure metrics mea-
sure whether the structure of generated log templates is correct
or not. We use four different structure metrics, three of which
are proposed in our previous paper30. There are two aspects
to explain the difference between the four structure metrics.
One is the difference in the decision unit to evaluate. WA and
TWA evaluate whether each word is labeled (i.e., classified as
description or variable) correctly or not, and LA and TA evalu-
ate whether the words in each log line are all labeled correctly
or not. The other is the difference in the counting unit to eval-
uate. WA and LA simply count the number of words or lines,
depending largely on the distribution of log instances (see also
subsection 4.1). In constrast, TA and TWA are the average of
the scores for each log templates, which means the metrics are
weighted to be fair to each log templates.

On the other hand, cluster metrics measure whether the mes-
sage clusters classified by the templates are correct or not.
RI, ARI, and Fm are the pair-wise metrics that are tradition-
ally used to evaluate clustering results. PA is designed for log
template generation, which strictly matches the generated clus-
ters with the ground truth. CA is an extended metrics of PA,
which is weighted for clusters instead of log instances, the
same as TA and TWA. Vm, which is also similar to PA, is a
combined value of two entropy-based support metrics, homo-
geneity (Ho) and completeness (Co). Ho measures whether
the log instances in one ground truth cluster are correctly
classified into one estimated cluster. Opposite to the Ho, Co
measures whether the log instances in one estimated cluster
are corresponding to only one ground truth cluster. These two
metrics respectively correspond to two kinds of failure cases
in strict cluster matching (similar to PA): over-division and
over-aggregation. From the viewpoint of template structures,
cluster over-division is caused by false estimation of variables

as descriptions, and cluster over-aggregation is caused by false
estimation of descriptions as variables.

We compare the six log template generation algorithms with
these ten accuracy metrics on amulog. We use the first three
months of log data as training and the following twelve months
for evaluation. For the online clustering methods, the training
data is preliminarily loaded into the model before evaluation
(This is mandatory for the FT-tree preprocessing. For other
methods, this stabilizes the template structure in the online
evaluation). For the CRF-based methods, we annotated 1,000
items sampled from the training data and used them to generate
the CRF model. In both cases, we only use the results of testing
data, not the training data, for calculating the metrics. Note that
the template-matching method can help the annotation step:
we manually prepare a list of answer log templates, and amu-
log annotates the items by the template-matching method with
the list.

5.3 Results and findings of metrics
We first need to discuss the usage of these ten accuracy metrics
in comparing log template generation methods. In this section,
we demonstrates some findings through the comparison results
shown in Table 3.

Online and offline measurement should be distinguished
in structure metrics: For the online clustering methods
(Drain, LenMa, and FT-tree), we can conduct two kinds of
accuracy measurement: offline and online. Offline evaluation
is the intuitive measurement that calculates after all evalua-
tion data processing has finished. In the online evaluation, we
incrementally calculate the structure metrics with the gener-
ated template just after each line is processed. This will cause
a difference of the structure metrics between offline and online
because the template structures change as cluster components
are added during data processing. Table 4 compares the accu-
racy of offline and online measurement in structure metrics.
In the comparison, the structure metrics values were differ-
ent between the online and offline evaluations: specifically,
many values were better in the online evaluation. Figure 7
helps understand the reason. In this example, the second line
of the estimated cluster members is an unexpected log instance
(i.e., over-aggregation). In the online measurement, top three
words were correctly labeled when processing the first line,
but failed when processing the following four lines because
the second line changes the template structure of this clus-
ter. In contrast in the offline measurement, the accuracy of all
lines are calculated with the final template structure. There-
fore, over-aggregation caused the performance degradation in

10 KOBAYASHI ET AL

TABLE 3 Performance comparison of log template generation algorithms.

Method Stats Structure metrics Cluster metrics Support metrics
Algorithm Time #Clusters WA LA TA TWA RI ARI Fm Vm PA CA Ho Co
(Answer) – 1,504 – – – – – – – – – – – –

Drain 3,241 2,726 0.933 0.559 0.221 0.817 0.997 0.988 0.990 0.984 0.582 0.408 0.971 0.997
LenMa 15,552 2,285 0.868 0.235 0.134 0.727 0.977 0.918 0.932 0.949 0.086 0.368 0.971 0.928
FT-tree 2,940 13,380 0.765 0.233 0.067 0.633 0.996 0.988 0.990 0.949 0.201 0.266 0.995 0.907
Dlog 8,238 9,549 0.698 0.000 0.053 0.665 0.994 0.981 0.985 0.972 0.066 0.394 0.997 0.948

RegEx 5,318 26,986 0.867 0.040 0.260 0.870 0.921 0.675 0.717 0.724 0.349 0.525 0.999 0.567
CRF 11,992 215,934 0.985 0.949 0.167 0.808 0.999 0.996 0.998 0.915 0.930 0.521 1.000 0.843
CRFe 12,155 10,793 0.940 0.529 0.560 0.941 0.999 0.998 0.998 0.990 0.278 0.745 1.000 0.979

Match+Drain 3,043 2,648 0.933 0.559 0.221 0.803 0.997 0.988 0.990 0.984 0.581 0.406 0.971 0.997
Match+LenMa 3,059 832 0.867 0.235 0.131 0.716 0.997 0.988 0.990 0.984 0.085 0.369 0.969 0.999
Match+FT-tree 3,047 9,530 0.834 0.203 0.068 0.670 0.996 0.988 0.990 0.953 0.007 0.305 0.988 0.919
Match+RegEx 3,025 21,246 0.867 0.041 0.269 0.872 0.921 0.676 0.718 0.725 0.351 0.545 1.000 0.568
Match+CRF 3,012 18,330 0.993 0.966 0.344 0.898 1.000 1.000 1.000 0.996 0.968 0.596 1.000 0.991
Match+CRFe 3,022 5,108 0.941 0.530 0.576 0.943 1.000 0.998 0.999 0.991 0.811 0.803 1.000 0.982

accepted password for user sat from 192.168.0.1
accepted password for user yuya from 192.168.0.2
accepted password for user otomo from 192.168.0.3
accepted password for user kensuke from 192.168.0.4

…

accepted password for user sat from 192.168.0.1
received disconnected by user sat from 192.168.0.1
accepted password for user yuya from 192.168.0.2
accepted password for user otomo from 192.168.0.3
accepted password for user kensuke from 192.168.0.4

…

Ground truth cluster

accepted password for user ** from ** ** ** ** user ** from **

Ground truth template

Estimated cluster

Estimated template

FIGURE 7 A simplified example of over-aggregation in clustering-based template generation methods. One additional unex-
pected log message significantly changes the structure of log templates. In online evaluation, messages only after the unexpected
message are considered failed to determine the structure of top three words. In offline evaluation, all the messages in the cluster
are considered failed.

TABLE 4 Comparison of online and offline measurements in
structure metrics.

Algorithm Offline WA LA TA TWA
Drain 0.933 0.559 0.221 0.817

✓ 0.903 0.572 0.121 0.813
LenMa 0.868 0.235 0.134 0.727

✓ 0.812 0.055 0.153 0.656
FT-tree 0.765 0.233 0.067 0.633

✓ 0.765 0.233 0.009 0.602
Match+Drain 0.933 0.559 0.221 0.803

✓ 0.902 0.572 0.125 0.817
Match+LenMa 0.867 0.235 0.131 0.716

✓ 0.811 0.055 0.237 0.803
Match+FT-tree 0.834 0.203 0.068 0.670

✓ 0.834 0.203 0.012 0.599

the structure metrics in the offline measurement. Hereafter,
we focus on online measurement results (Table 3 is all online
measurement).

Over-division and over-aggregation can be measured by
Vm support metrics.: As explained in offline-online compar-
ison, over-division and over-aggregation make different effect
on the measurement results. With Ho and Co, the support-
ing metrics of Vm, we can measure how much over-division
and over-aggregation exists in the comparison results (see sub-
section 5.2). For example in Table 3, Drain and LenMa had

smaller Ho scores (i.e., more over-aggregation). This can also
be confirmed in Table 4: the offline-online difference is larger
in Drain and LenMA than in FT-tree especially on unweighted
metrics (WA and LA).

It is important to understand the two failure cases, over-
division and over-aggregation, in the template generation
results. One reason is that the failures of some template gen-
eration methods can be biased for each of the cases. In the
six methods, Drain and LenMa have both over-division and
over-aggregation. In comparison, failures in other methods are
biased to over-division. The other reason is that the presen-
tation of generated log templates depends on failure cases.
If a template has an over-division failure, the generated tem-
plates still have much variables, so the over-division should be
reduced for anonymizing log data. On the other hands, if a tem-
plate has an over-aggregation failure, the generated template
is too much masked (see also Figure 7). The over-aggregation
should be reduced for some visualization purposes.

Pairwise metrics are not effective in long-tailed dataset:
In Table 3, pair-wise cluster metrics (RI, ARI, and Fm) were
nearly stuck to the upper limit. As shown in Figure 5, the log
template appearance in our dataset is long-tailed. Pair-wise
values depend on the square of the number of log lines, where
the values only demonstrate major clusters in the dataset.

KOBAYASHI ET AL 11

Line-counting metrics are for trend analysis, and
template-counting metrics are for anomaly analysis: To
clarify the difference between the counting unit (i.e., lines or
clusters), we focus on the difference between CRF and CRFe.
The difference stems mainly from extension (2) of CRFe: sam-
pling training data. CRF randomly selects training data, which
means frequently appearing messages are intensively learned
(according to the log instance distribution shown in Figure 5,
90% of the training data would belong to only ten templates
if randomly sampled). In contrast, CRFe selects training data
including minor log templates, which means the CRFe model
focuses more on minor log templates than frequent ones. This
difference is confirmed by the results in Table 3: CRF was
superior, especially on LA and PA (i.e., counting lines), and
CRFe was superior on TA, TWA, and CA (i.e., counting tem-
plates). To this end, we should select appropriate metrics for
further analysis usage of log data. If we focus largely on the
time-series trend of frequent messages (e.g., access-log trend
analysis), we should focus on line-counting metrics such as
LA, PA, and Vm. On the other hand, if we focus on anoma-
lous events that rarely appear (e.g., troubleshooting of error
logs), we should focus on template-counting metrics such as
TA, TWA, and CA.

Structure metrics and cluster metrics should be used
together: Especially with clustering-based template genera-
tion methods, large cluster metrics do not mean large structure
metrics. This is because, in clustering-based method, a tem-
plate structure is obtained as the common parts of log instances
in a cluster. Even if the cluster is completely accurate, some
variables can be consistent in a dataset and be considered as
descriptions. The template structure is expected accurate for
example in semantic analysis54 or variable analysis. For these
purposes, we should consider not only cluster metrics but also
structure metrics.

Line-complete metrics and cluster-complete metrics are
too peaky to understand template generation results: We
can see that some metrics, especially LA and TA, were too
peaky for comparison. These metrics consider the labeling
of a log message as failed even with one failed label (i.e.,
line-complete) and are sometimes ineffective for comparison
because they cannot distinguish partial failures from nearly
complete failures. PA and CA also have a similar problem, as
they consider log instances in a cluster as all failed even with
one excess or deficiency message (i.e. cluster-complete). In
terms of over-aggregation, this is reasonable because one unex-
pected message can break the template structure completely as
shown in Figure 7. However, in terms of over-division, these
metrics are too sensitive. We can see this with the results for
Dlog and CRFe: almost all failures on these methods were due
to over-division (i.e., large Ho and small Co), and they had a
large Vm but comparatively small PA even though Vm and PA

are similar metrics depending on the number of lines. There-
fore, we should avoid these peaky metrics (LA, TA, PA, and
CA) for precise comparison of template generation methods.

Recommendation: From these findings, if one intends to
design log template generation methods for general further
usage, the recommendation is using TWA and Vm for eval-
uation, and additionally using Vm’s supporting metrics (Ho
and Co) for validation. Vm shows the accuracy for standard
usage such as trend analysis, and TWA shows the accuracy
for anomaly analysis and template-structure-required analy-
sis. The supporting metrics will help understand what kind
of failures (i.e., over-division or over-aggregation) exist in the
results.

5.4 Comparison results of template
generation methods
On the basis of above, we briefly compare the template gen-
eration methods. Drain is the state-of-the-art method in this
field, and it outperformed the other clustering methods in terms
of accuracy. Even so, it had more over-aggregation failures
than the other methods, which may result in some minor log
messages being buried into a cluster of major messages with
different template structures (as in Figure 7). If we intend to
avoid over-aggregation for further analysis, we should also
consider other methods such as Dlog. Moreover, if we allow a
certain amount of training data to be manually annotated, CRF
or CRFe would be the best method. These CRF-based meth-
ods are especially effective in terms of structure metrics, which
has a big impact on further log analysis considering variable
values of log instances (e.g., protocol-specific analysis).

In addition, we can see combining template matching and
existing methods is effective in many cases. For the meth-
ods that require large processing time (especially LenMa and
CRFs), template matching reduces processing time to the same
level as Drain and FT-tree. In particular, the processing time
of CRFe is 75% reduced if combined with template matching.
Also, template matching does not largely change the accuracy
in any metrics. In particular for CRFs, the accuracy metrics
(notable in PA and Vm) are improved with template match-
ing. This is because CRF sometimes fails to label variables
that appear in multiple different templates. The messages with
these variables can be easily merged with appropriate template
clusters by template matching. Therefore, template matching
is effective especially when combined with structure-based
methods.

12 KOBAYASHI ET AL

6 DISCUSSION

Requirements for combination of template generation
methods: In this paper, we demonstrated the combination
of template matching and existing template generation meth-
ods. They are combined in pipeline style; one method gen-
erates templates for a part of input accurately, and the other
method generates templates for the remaining part of input.
As explained in subsection 5.1, this approach is only avail-
able for online template generation. For effective combination,
the combined passing methods (i.e., methods except the last
one) need to be more accurate than the following methods and
only determine a part of messages. LogParse32 uses a similar
approach to combine multiple template generation methods,
but it has some limitations (see section 2).

Practical use of combined template generation: The com-
bination of template-matching method is also useful for more
practical situations. In actual operation, we sometimes have
partial lists of accurate log templates. For example in network
fields, the partial log templates can be obtained from vendor’s
documentation of network devices. These template lists are
used in two different approaches. One approach is for com-
bined template matching. By adding the template lists as initial
knowledge of the template search tree, amulog can generate
accurate log templates for more log inputs. The other approach
is for CRF training data. With the template lists, we can gen-
erate annotated training data more easily. Note that generating
training data from some lists may cause a training bias, so it
is better to add manually generated training data that follows
missing templates in the lists. These two approaches can be
used together, which will largely improve the accuracy of log
template generation.

Manual modification of log templates: Amulog supports
manual modification of log template structures after automated
log template generation. This modification not only changes
template structure but also re-organize log message clusters. It
will help more flexible operation, for example when we have
known important log messages that must be classified accu-
rately. If one needs to prepare ground truth log templates of
a dataset for evaluating log template generation methods, the
manual modification function is also helpful to make it.

If we simply modify log templates generated by online clus-
tering methods, it may lose consistency of online clustering.
However, if the method is combined with template matching,
we can modify the templates on the search tree and keep online
clustering consistent. Therefore, the template matching is also
helpful for flexible management. Note that if one intends to
modify log templates manually, he/she should select an auto-
mated log template generation method that has smaller over-
aggregation. In our experience, we can easily fix over-divided

templates by just replacing variables into wildcards. In con-
trast, it is difficult to fix over-aggregated templates because we
need to refer cluster members to reorganize accurate templates.

Input data format: We used log examples shown in
Figure 1, which is described in the default format of rsyslog55.
Amulog is mainly designed for syslog data, but it also accepts
line-based logs including at least a timestamp and an unstruc-
tured statement (Amulog also requires a hostname, but it can be
a dummy in single systems). Log2seq accepts any format of the
input logs satisfying this requirements with the customizable
header parser if the header format is common in a dataset. The
header part of recorded syslog data may include other param-
eters: facility, severity, and app-name are optional annotation
information of the following unstructured message, and pro-
cid and msgid usually do not include information for system
troubleshooting. In amulog, the optional annotation informa-
tion can be parsed with log2seq and used as annotation tags
of log templates. The annotation tags can be used for search
and classification of log time-series in further analysis (e.g.,
for domain knowledge in causal analysis14).

Parameter tuning: Amulog is also helpful for parame-
ter tuning of log template generation methods. To illustrate
this, we selected a set of parameters for Drain by an auto-
mated parameter tuning on the annotated three-months dataset
(corresponding to the three-months training data used in sub-
section 5.2). Drain has two parameters, 𝑑𝑒𝑝𝑡ℎ and 𝑠𝑡, and the
appropriate parameters depend on the dataset27. We maxi-
mized Vm and obtain 𝑑𝑒𝑝𝑡ℎ = 3 and 𝑠𝑡 = 0.5. Note that
the obtained parameters change if we use different accuracy
metrics to be maximized, so it is important to use appropriate
accuracy metrics for the purposes of further analysis to select
a reasonable set of parameters.

Limitation: As amulog consistently uses segmented log
statements, there is a limitation that amulog cannot distinguish
log templates with common words but different separator sym-
bols. In our experience, it is a rare case that two such templates
have different meanings and their clusters should be divided.
Instead, the minor changes of separator symbols are mainly
caused by the updates of softwares or firmwares. For the long
term analysis, we do not need to distinguish templates with dif-
ferent separator symbols. Similar problems appear if we use
log templates extracted from software source codes on amu-
log. There are some literature that use log templates extracted
from source codes18,19,56. These templates are not parsed as the
sequence of words, and cannot be segmented directly because
the variable part can include separator symbols that are not
visible in the templates. To use these templates on amulog,
we additionally need their log instances to apply segmenta-
tion accurately. Still, the scalable template-matching method of
amulog is very helpful to use these extracted templates because

KOBAYASHI ET AL 13

the number of extracted templates is extremely large com-
pared to the ones that actually appear in managed systems. For
example, Yamashiro et al.56 generated 28,148 templates from
source code57 of routing services of Vyatta, an open source
router.

7 CONCLUSION

In this paper, we have proposed the design and implementa-
tion of a general framework, amulog, for template-based log
analysis. Our design is characterized by a simplified data flow
while using segmented log messages consistently. We imple-
mented amulog considering the three issues facing framework
design: rule-based log parsing, tree-based template matching,
and database schema. Our evaluation demonstrated that the
proposed template-matching algorithm is scalable enough to
match 1-day log messages (76,000 lines) with more than 105
templates in 40 seconds. To demonstrate the applicability of
amulog to the comparison and combination of log template
generation methods, we conducted a comprehensive compar-
ison of existing log template generation methods with real
network log data on amulog. We clarified that there is no
one best log template generation method; rather, we need to
select which methods to use by considering the purposes of
the further analysis. We also confirmed that the combination
of template matching with existing methods is effective to
decrease processing time of log template generation.

As future work, we will implement state-of-the-art template
generation methods as external modules for amulog. We will
also share the log2seq configurations for major devices and
applications. In addition, we will consider further log analysis
approaches based on amulog.

ACKNOWLEDGEMENTS

This work is supported by the MIC/SCOPE #191603009.

References

1. Kobayashi S, Yamashiro Y, Otomo K, Fukuda K. amulog:
A General Log Analysis Framework for Diverse Template
Generation Methods. In: Proceedings of the 16th Interna-
tional Conference on Network and Service Management
(CNSM) IFIP/IEEE. ; 2020: 1-5.

2. Kurimoto T, Urushidani S, Yamada H, et al. SINET5:
A low-latency and high-bandwidth backbone network for
SDN/NFV Era. In: Proceedings of the IEEE International
Conference on Communications (ICC) IEEE. ; 2017: 1-7.

3. Gerhards R. The Syslog Protocol. RFC 5424; 2009.

4. Bai J. Feasibility analysis of big log data real time search
based on Hbase and ElasticSearch. In: Proceedings of the
2013 International Conference on Computing, Network-
ing and Communications (ICNC) IEEE. ; 2013: 1166-
1170.

5. Cuong TV, Nam NV. An Efficient Log Management Sys-
tem. VNU Journal of Computer Science and Communica-
tion Engineering 2016; 32(2): 43-48.

6. Abe H, Shima K, Miyamoto D, et al. Distributed
Hayabusa: Scalable Syslog Search Engine Optimized for
Time-Dimensional Search. In: Proceedings of the Asian
Internet Engineering Conference (AINTEC) ACM. ; 2019:
9-16.

7. Kimura T, Ishibashi K, Mori T, et al. Spatio-temporal fac-
torization of log data for understanding network events.
In: Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM) IEEE. ; 2014:
610-618.

8. Li T, Ma J, Sun C. Dlog: diagnosing router events with
syslogs for anomaly detection. The Journal of Supercom-
puting 2018; 74: 845-867.

9. Otomo K, Kobayashi S, Fukuda K, Esaki H. Latent Vari-
able based Anomaly Detection in Network System Logs.
IEICE Transactions on Information and Systems 2019;
E102.D(9): 1644-1652.

10. Meng W, Liu Y, Zhu Y, et al. Loganomaly: Unsuper-
vised detection of sequential and quantitative anomalies in
unstructured logs. In: Proceedings of the IJCAI Interna-
tional Joint Conference on Artificial Intelligence IJCAI. ;
2019: 4739-4745.

11. Zhang X, Xu Y, Lin Q, et al. Robust log-based anomaly
detection on unstable log data. In: Proceedings of the ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE) ACM. ; 2019: 807-817.

12. Zheng Z, Yu L, Lan Z, Jones T. 3-Dimensional root
cause diagnosis via co-analysis. In: Proceedings of the
International Conference on Autonomic Computing and
Communications (ICAC) ACM. ; 2012: 181-190.

13. Kobayashi S, Otomo K, Fukuda K, Esaki H. Mining
causes of network events in log data with causal inference.
IEEE Transactions on Network and Service Management
2018; 15(1): 53-67.

14 KOBAYASHI ET AL

14. Kobayashi S, Otomo K, Fukuda K. Causal analysis of
network logs with layered protocols and topology knowl-
edge. In: Proceedings of the 15th International Confer-
ence on Network and Service Management (CNSM 2019)
IFIP/IEEE. ; 2019: 1-9.

15. Li T, Ma J, Pei Q, Shen Y, Lin C, Ma S. AClog: Attack
Chain Construction Based on Log Correlation. In: Pro-
ceedings of the 2019 IEEE Global Communications Con-
ference (GLOBECOM) IEEE. ; 2019: 1-6.

16. El-Masri D, Petrillo F, Guéhéneuc YG, Hamou-Lhadj
A, Bouziane A. A systematic literature review on auto-
mated log abstraction techniques. Information and Soft-
ware Technology 2020; 122: 1-23.

17. Landauer M, Skopik F, Wurzenberger M, Rauber A.
System log clustering approaches for cyber security
applications: A survey. Computers and Security 2020;
92(101739): 1-17.

18. Xu W, Huang L, Fox A, Patterson D, Jordan MI. Detecting
large-scale system problems by mining console logs. In:
Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) ACM. ; 2009: 117-132.

19. Tak BC, Tao S, Yang L, Zhu C, Ruan Y. LOGAN: Problem
Diagnosis in the Cloud Using Log-Based Reference Mod-
els. In: Proceedings of the IEEE International Conference
on Cloud Engineering (IC2E) IEEE. ; 2016: 62-67.

20. Zhang M, Zhao Y, He Z. GenLog: Accurate Log Tem-
plate Discovery for Stripped X86 Binaries. In: Proceed-
ings of the IEEE Computer Society Computers, Software,
and Applications Conference (COMPSAC) IEEE. ; 2017:
337-346.

21. Vaarandi R, Pihelgas M. LogCluster - A Data Clustering
and Pattern Mining Algorithm for Event Logs. In: Pro-
ceedings of the 11th International Conference on Network
and Service Management (CNSM) IFIP/IEEE. ; 2015: 1-8.

22. Makanju A, Zincir-Heywood AN, Milios EE. Clustering
event logs using iterative partitioning. In: Proceedings
of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) ACM. ;
2009: 1255-1264.

23. Tang L, Li T, Perng Cs. LogSig: Generating System
Events from Raw Textual Logs. In: Proceedings of the
ACM Conference on Information and Knowledge Manage-
ment (CIKM) ACM. ; 2011: 785-794.

24. Mizutani M. Incremental Mining of System Log For-
mat. In: Proceedings of the 2013 IEEE International

Conference on Services Computing (SCC) IEEE. ; 2013:
595-602.

25. Hamooni H, Debnath B, Xu J, Zhang H, Jiang G, Mueen
A. LogMine: Fast Pattern Recognition for Log Analytics.
In: Proceedings of the ACM Conference on Information
and Knowledge Management (CIKM) ACM. ; 2016: 1573-
1582.

26. Kimura T, Watanabe A, Toyono T, Ishibashi K. Proac-
tive Failure Detection Learning Generation Patterns of
Large-scale Network Logs. IEICE Transactions on Com-
munications 2019; E102.B(2): 306-316.

27. He P, Zhu J, Zheng Z, Lyu MR. Drain: An online log
parsing approach with fixed depth tree. In: Proceedings of
the 2017 IEEE International Conference on Web Services
(ICWS) IEEE. ; 2017: 33-40.

28. Qiu T, Tech G, Ge Z, Park F, Pei D, Xu JJ. What Happened
in my Network? Mining Network Events from Router
Syslogs Categories and Subject Descriptors. In: Proceed-
ings of the 2010 Internet Measurement Conference (IMC)
ACM SIGCOMM. ; 2010: 472-484.

29. Zhang S, Meng W, Bu J, Yang S, Liu Y, Pei D. Sys-
log Processing for Switch Failure Diagnosis and Pre-
diction in Datacenter Networks. In: Proceedings of the
25th IEEE/ACM International Symposium on Quality of
Service (IWQoS) IEEE/ACM. ; 2017: 1-10.

30. Kobayashi S, Fukuda K, Esaki H. Towards an NLP-based
log template generation algorithm for system log analy-
sis. In: Proceedings of the 9th International Conference
on Future Internet Technologies (CFI) ACM. ; 2014: 1-4.

31. Nedelkoski S, Bogatinovski J, Acker A, Cardoso J, Kao O.
Self-Supervised Log Parsing. arXiv 2020: 1-16.

32. Meng W, Liu Y, Zaiter F, et al. LogParse: Making
Log Parsing Adaptive through Word Classification. In:
Proceedings of the 29th International Conference on
Computer Communications and Networks (ICCCN 2020)
IEEE. ; 2020: 1-9.

33. He P, Zhu J, He S, Li J, Lyu MR. An Evaluation Study on
Log Parsing and Its Use in Log Mining. In: Proceedings
of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) IEEE/IFIP. ;
2016: 654-661.

34. Zhu J, He S, Liu J, et al. Tools and Benchmarks for
Automated Log Parsing. In: Proceedings of the 41st Inter-
national Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP) IEEE. ; 2019: 121-
130.

KOBAYASHI ET AL 15

35. log2seq. https://github.com/amulog/log2seq; .

36. amulog. https://github.com/amulog/amulog; .

37. Urushidani S, Aoki M, Fukuda K, et al. Highly available
network design and resource management of SINET4.
Telecommunication Systems 2014; 56: 33-47.

38. Logstash. https://www.elastic.co/jp/products/logstash; .

39. Napalm-logs. https://napalm-logs.readthedocs.io/en/
latest/; .

40. Elasticsearch. https://www.elastic.co/products/
elasticsearch; .

41. Vaarandi R, Niziński P. Comparative analysis of open-
source log management solutions for security monitor-
ing and network forensics. In: Proceedings of the Euro-
pean Conference on Information Warfare and Security
(ECCWS) ACPI. ; 2013: 278-287.

42. Li T, Jiang Y, Zeng C, et al. FLAP: An end-to-end event
log analysis platform for system management. In: Pro-
ceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining ACM. ; 2017:
1547–1556.

43. Wurzenberger M, Landauer M, Skopik F, Kastner W.
AECID-PG: A tree-based log parser generator to enable
log analysis. In: Proceedings of the 4th IEEE/IFIP Inter-
national Workshop on Analytics for Network and Service
Management (AnNet 2019) IFIP/IEEE. ; 2019: 7–12.

44. logpai/logparser. https://github.com/logpai/logparser; .

45. Shima K. Length Matters: Clustering System Log Mes-
sages using Length of Words. arXiv 2016: 1-10.

46. He P, Zhu J, He S, Li J, Lyu MR. Towards Automated
Log Parsing for Large-Scale Log Data Analysis. IEEE
Transactions on Dependable and Secure Computing 2018;
15(6): 931–944.

47. Lafferty J, Mccallum A, Pereira FCN. Conditional Ran-
dom Fields : Probabilistic Models for Segmenting and
Labeling Sequence Data. In: Proceedings of the Interna-
tional Conference on Machine Learning (ICML) IMLS. ;
2001: 282-289.

48. Vaarandi R. A data clustering algorithm for mining pat-
terns from event logs. In: Proceedings of the 3rd IEEE
Workshop on IP Operations & Management (IPOM)
IEEE. ; 2003: 119-126.

49. M. Rand W. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical Asso-
ciation 1971; 66(336): 846-850.

50. Hubert L, Arabie P. Comparing partitions. Journal of
Classification 1985; 2: 193-218.

51. Basu S, Banerjee A, Mooney RJ. Active semi-supervision
for pairwise constrained clustering. In: Proceedings of
the 2004 SIAM international conference on data mining
SIAM. ; 2004: 333–344.

52. Rosenberg A, Hirschberg J. V-Measure: A conditional
entropy-based external cluster evaluation measure. In:
Proceedings of the 2007 Conference on Empirical Meth-
ods on Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL) ACL. ;
2007: 410-420.

53. Tang L, Li T. LogTree: A framework for generating system
events from raw textual logs. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM 2010)
IEEE. ; 2010: 491–500.

54. Otomo O, Kobayashi S, Fukuda K, Esaki H. Latent
Semantics Approach for Network Log Analysis: Model-
ing and its application. In: Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Manage-
ment (IM 2021) IFIP/IEEE. ; 2021: 1-9.

55. rsyslog. https://www.rsyslog.com; .

56. Yamashiro Y, Kobayashi S, Fukuda K, Esaki H. Network
Log Template Generation from Open Source Software.
IEICE Technical Report (in japanese) 2018; 118(204):
15–22.

57. vyos-legacy/vyatta-quagga. https://github.com/vyos/
vyatta-quagga/tree/napa; .

https://github.com/amulog/log2seq
https://github.com/amulog/amulog
https://www.elastic.co/jp/products/logstash
https://napalm-logs.readthedocs.io/en/latest/
https://napalm-logs.readthedocs.io/en/latest/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://github.com/logpai/logparser
https://www.rsyslog.com
https://github.com/vyos/vyatta-quagga/tree/napa
https://github.com/vyos/vyatta-quagga/tree/napa

	amulog: A General Log Analysis Framework for Comparison and Combination of Diverse Template Generation Methods
	Abstract
	Introduction
	Related works
	amulog
	Requirements
	Overview of amulog
	Log parsing
	Template matching
	Data storage
	Implementation

	Evaluation
	Dataset
	Log template matching

	Application
	Template generation methods for comparison
	Accuracy metrics and comparison settings
	Results and findings of metrics
	Comparison results of template generation methods

	Discussion
	Conclusion
	Acknowledgements
	References

