Causal analysis of network logs with layered protocols and topology knowledge

Satoru Kobayashi, Kazuki Otomo, Kensuke Fukuda CNSM 2019, Halifax Oct 23, 2019

Outline

- Background and research goal
- Approach
 - Introduction to causal analysis of network logs
 - Proposed method for using domain knowledge in causal analysis
- Evaluation
- Conclusion

Difficulty of leveraging system log in network management

- Huge dataset
 - Large scale and complicated systems
 - 150,000 lines / day in SINET 5

- Automated analysis required
- Difficulty in automated analysis
 - Free-format and sparse data
 - Contextual information required for troubleshooting

Causal analysis in operational data

- Causal analysis: A popular approach for extracting contextual information
 - More reliable than correlation-based approach
- Problem:
 - Efficiency (large processing time)
 - No consideration of network knowledge

Causal analysis with network domain knowledge

Goal

- Provide contextual information for system management and troubleshooting from network system logs
 - Causal analysis + Network domain knowledge
 - Improve efficiency and reliability

Dataset

• SINET4

- https://www.sinet.ad.jp/en/top-en
- A nation-wide R&E network in Japan
- 8 core routers and 100 over L2 switches
- 15 months syslog data
 - 3.5 million lines to analyze

Causal analysis of network logs[1]

Oct 17 17:00:00 routerA System shutdown by root

Oct 17 17:00:05 switchB Error detected on eth0

Oct 17 17:00:15 routerC BGP state changed from Established to Idle

Oct 17 17:00:15 routerD SNMP trap sent to routerA

•••••

Causal Inference

- Conditional Independence
 - A and B are independent if the effect of confounder C is excluded
 - A and B are conditionally independent given C
- PC algorithm [2]
 - Directed acyclic graph (DAG)
 - Explore conditional independence and remove false edges

$$P(A|C)P(B|C) = P(A,B|C)$$

Flow of PC algorithm

[3] R. E. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.

[4] T. Verma, et al. "An algorithm for deciding if a set of observed independencies has a causal explanation". In Proceedings of UAI'92, pp. 323–330, 1992.

Causal analysis with network logs [1]

[1] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37–67, 2018.

Approach: Pruning initial graph

- PC algorithm usually starts with complete graph
 - Takes large processing time if network structure is large and complex
- Prune edges in initial graph of PC algorithm

Pruning edges with domain knowledge

- Basic idea
 - Some edge candidates are clearly not causality
 - Compared with domain knowledge of operators
 - Ignore in calculating causality

Difficulty in pruning

- Unobserved events mediate causality
 - Pruning mediated causality breaks causal flow
- -> How to determine the criteria?

Proposed method: 2 criteria

Rule 1. Events in same device, or in same functional layer and in connected devices

Rule 2. A causal edge can be mediated with

1 (or 0) unobserved event

Example: Good causality candidate

Example: Bad causality candidate

Algorithm to classify causality candidate

- Keep a causal edge if satisfying 1 or 2
 - 1. 2 events appear in same device
 - 2. At least 1 end node (event) is on a functional layer that connects the devices

Analysis in SINET4 data

- Domain knowledge for pruning
 - Network topology (L2, L3)

- Manually labeled 9 classes for log templates
- Layer definition for the classes \downarrow

Layer definition	Event group (label)	
L3	Routing-EGP, Routing-IGP, VPN	
L2	Interface, Network	
Others	System, Service, Management, Monitor	

Evaluation

Compare 3 methods (different initial graph)

[1] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37–67, 2018.

Processing time of PC algorithm

Average processing time for 1-day data

Quality of causal edges

Event classes of end nodes of detected edges

\mathbf{Type}	#Nodes	#Ends of edges		
		None	Area	ML
System	49,005	$24,\!577$	23,033	22,662
Network	$10,\!585$	1,402	$1,\!391$	1,355
Interface	$13,\!562$	1,943	$2,\!062$	2,134
Service	7,697	742	435	314
Mgmt	81,628	29,379	$27,\!911$	26,332
Monitor	$2,\!467$	267	305	304
VPN	$4,\!538$	97	$1,\!171$	155
Rt-EGP	4,738	1,923	2,063	2,063
Rt-IGP	870	18	19	17
Total	175,090	60,348	58,390	55,336

Multi-Layered method:
Same distribution with None

Quality of causal edges

Event classes of end nodes of detected edges

Summary of evaluation

Pruning methods	Processing time	Quality of edges
None	X Takes 10 minutes / day	(Shown in previous paper [1])
Area-based method	O Decrease 69%	× No consideration of area gaps
Multi-Layered method (proposed method)	© Decrease 74%	Similar distribution to None

Discussion

- Parallel processing?
 - Available in PC algorithm [5]
- Available in other causal algorithms?
 - Depends on algorithms
 - Easily available in regression-based methods or constraint-based causal methods
- Available in any network?
 - Effective even in full-mesh-topology network

Conclusion

- Causal inference approach with network domain knowledge for helping troubleshooting
- Pruning initial graph of PC algorithm
 - Considering unobserved events
- Improvement in terms of processing time and quality of edges
 - Decrease 74%, 16% faster than Area-based method
 - Solve area-gap problem in Area-based method
- https://github.com/cpflat/logdag